Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Tableau 2023

You're reading from   Mastering Tableau 2023 Implement advanced business intelligence techniques, analytics, and machine learning models with Tableau

Arrow left icon
Product type Paperback
Published in Aug 2023
Publisher Packt
ISBN-13 9781803233765
Length 684 pages
Edition 4th Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Marleen Meier Marleen Meier
Author Profile Icon Marleen Meier
Marleen Meier
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Reviewing the Basics 2. Getting Your Data Ready FREE CHAPTER 3. Using Tableau Prep Builder 4. Learning about Joins, Blends, and Data Structures 5. Introducing Table Calculations 6. Utilizing OData, Data Densification, Big Data, and Google BigQuery 7. Practicing Level of Detail Calculations 8. Going Beyond the Basics 9. Working with Maps 10. Presenting with Tableau 11. Designing Dashboards and Best Practices for Visualizations 12. Leveraging Advanced Analytics 13. Improving Performance 14. Exploring Tableau Server and Tableau Cloud 15. Integrating Programming Languages 16. Developing Data Governance Practices 17. Other Books You May Enjoy
18. Index

Three essential Tableau concepts

An important stop on the road to mastering Tableau involves three essential concepts. In this section, we’ll discuss each of them:

  • Dimensions and measures
  • Row-level, aggregate-level, and table-level calculations
  • Continuous and discrete

We’ll start by defining dimensions and measures.

Dimensions and measures

Tableau categorizes every field from an underlying data source as either a dimension or a measure. A dimension is qualitative or, to use another word, categorical. A measure is quantitative or aggregable. A measure is usually a number but may be an aggregated, non-numeric field, such as MAX (Date). A dimension is usually a text, Boolean, or date field, but may also be a number, such as Number of Records. Dimensions provide meaning to numbers by slicing those numbers into separate parts/categories. Measures without dimensions are mostly meaningless.

Let’s look at an example to understand...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image