Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning with R

You're reading from   Mastering Machine Learning with R Master machine learning techniques with R to deliver insights for complex projects

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher
ISBN-13 9781783984527
Length 400 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Cory Lesmeister Cory Lesmeister
Author Profile Icon Cory Lesmeister
Cory Lesmeister
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. A Process for Success 2. Linear Regression – The Blocking and Tackling of Machine Learning FREE CHAPTER 3. Logistic Regression and Discriminant Analysis 4. Advanced Feature Selection in Linear Models 5. More Classification Techniques – K-Nearest Neighbors and Support Vector Machines 6. Classification and Regression Trees 7. Neural Networks 8. Cluster Analysis 9. Principal Components Analysis 10. Market Basket Analysis and Recommendation Engines 11. Time Series and Causality 12. Text Mining A. R Fundamentals Index

Summary

In this chapter, you learned both the power and limitations of tree-based learning methods for both the classification and regression problems. Single trees, while easy to build and interpret, may not have the necessary predictive power for many of the problems that we are trying to solve. To improve on the predictive ability, we have the tools of random forest and gradient boosted trees at our disposal. With random forest, dozens or hundreds of trees are built and the results aggregated for an overall prediction. Each tree of the random forest is built using a sample of the data called bootstrapping as well as a sample of the predictive variables. As for gradient boosting, an initial, and a relatively small, tree is produced. After this initial tree is built, subsequent trees are produced based on the residuals. The intended result of such a technique is to build a series of trees that can improve on the weakness of the prior tree in the process, resulting in decreased bias and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime