Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Geospatial Analysis with Python

You're reading from   Mastering Geospatial Analysis with Python Explore GIS processing and learn to work with GeoDjango, CARTOframes and MapboxGL-Jupyter

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788293334
Length 440 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Silas Toms Silas Toms
Author Profile Icon Silas Toms
Silas Toms
Paul Crickard Paul Crickard
Author Profile Icon Paul Crickard
Paul Crickard
Eric van Rees Eric van Rees
Author Profile Icon Eric van Rees
Eric van Rees
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Package Installation and Management 2. Introduction to Geospatial Code Libraries FREE CHAPTER 3. Introduction to Geospatial Databases 4. Data Types, Storage, and Conversion 5. Vector Data Analysis 6. Raster Data Processing 7. Geoprocessing with Geodatabases 8. Automating QGIS Analysis 9. ArcGIS API for Python and ArcGIS Online 10. Geoprocessing with a GPU Database 11. Flask and GeoAlchemy2 12. GeoDjango 13. Geospatial REST API 14. Cloud Geodatabase Analysis and Visualization 15. Automating Cloud Cartography 16. Python Geoprocessing with Hadoop 17. Other Books You May Enjoy

Preface

Over time, Python has become the programming language of choice for spatial analysis, resulting in many packages that read, convert, analyze, and visualize spatial data. With so many packages available, it made sense to create a reference book for students and experienced professionals containing essential geospatial Python libraries for Python 3.

This book also comes at an exciting moment: new technology is transforming how people work with geospatial data – IoT, machine learning, and data science are areas where geospatial data is used constantly. This explains the inclusion of new Python libraries, such as CARTOframes and MapboxGL, and Jupyter is included as well, to explore these new trends. At the same time, web and cloud-based GIS is increasingly becoming the new standard. This is reflected in the chapters of the second part of this book, where interactive geospatial web maps and REST APIs are introduced.

These newer libraries are combined with a number of older ones that have become essential over the years, and are still very popular to this day, such as Shapely, Rasterio, and GeoPandas. Readers who are new to this field will be given a proper introduction to popular libraries, putting them into perspective and comparing their syntax through code examples using real-world data.

Finally, this books marks the transition from Python 2 to 3.x. All of the libraries covered in this book were written in Python 3.x so that the readers can access all of them using Jupyter Notebook, which is also the recommended Python coding environment for this book.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime