Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Data analysis with R

You're reading from   Mastering Data analysis with R Gain sharp insights into your data and solve real-world data science problems with R—from data munging to modeling and visualization

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher Packt
ISBN-13 9781783982028
Length 396 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Gergely Daróczi Gergely Daróczi
Author Profile Icon Gergely Daróczi
Gergely Daróczi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Hello, Data! 2. Getting Data from the Web FREE CHAPTER 3. Filtering and Summarizing Data 4. Restructuring Data 5. Building Models (authored by Renata Nemeth and Gergely Toth) 6. Beyond the Linear Trend Line (authored by Renata Nemeth and Gergely Toth) 7. Unstructured Data 8. Polishing Data 9. From Big to Small Data 10. Classification and Clustering 11. Social Network Analysis of the R Ecosystem 12. Analyzing Time-series 13. Data Around Us 14. Analyzing the R Community A. References Index

Other popular online data formats

Structured data is often available in XML or JSON formats on the Web. The high popularity of these two formats is due to the fact that both are human-readable, easy to handle from a programmatic point of view, and can manage any type of hierarchical data structure, not just a simple tabular design, as CSV files are.

Note

JSON is originally derived from JavaScript Object Notation, which recently became one of the top, most-used standards for human-readable data exchange format. JSON is considered to be a low-overhead alternative to XML with attribute-value pairs, although it also supports a wide variety of object types such as number, string, boolean, ordered lists, and associative arrays. JSON is highly used in Web applications, services, and APIs.

Of course, R also supports loading (and saving) data in JSON. Let's demonstrate that by fetching some data from the previous example via the Socrata API (more on that later in the R packages to interact with...

You have been reading a chapter from
Mastering Data analysis with R
Published in: Sep 2015
Publisher: Packt
ISBN-13: 9781783982028
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image