Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning with Scala Quick Start Guide

You're reading from   Machine Learning with Scala Quick Start Guide Leverage popular machine learning algorithms and techniques and implement them in Scala

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781789345070
Length 220 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Ajay Kumar N Ajay Kumar N
Author Profile Icon Ajay Kumar N
Ajay Kumar N
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface 1. Introduction to Machine Learning with Scala FREE CHAPTER 2. Scala for Regression Analysis 3. Scala for Learning Classification 4. Scala for Tree-Based Ensemble Techniques 5. Scala for Dimensionality Reduction and Clustering 6. Scala for Recommender System 7. Introduction to Deep Learning with Scala 8. Other Books You May Enjoy

LR for churn prediction

LR is an algorithm for classification, which predicts a binary response. It is similar to linear regression, which we described in Chapter 2, Scala for Regression Analysis, except that it does not predict continuous values—it predicts discrete classes. The loss function is the sigmoid function (or logistic function):

Similar to linear regression, the intuition behind the cost function is to penalize models that have large errors between the real response and the predicted response:

For a given new data point, x, the LR model makes predictions using the following equation:

In the preceding equation, the logistic function is applied to the regression to get the probabilities of it belonging in either class, where z = wT x and if f(wT x) > 0.5, the outcome is positive; otherwise, it is negative. This means that the threshold for the classification...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image