Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning with R

You're reading from   Machine Learning with R R gives you access to the cutting-edge software you need to prepare data for machine learning. No previous knowledge required ‚Äì this book will take you methodically through every stage of applying machine learning.

Arrow left icon
Product type Paperback
Published in Oct 2013
Publisher Packt
ISBN-13 9781782162148
Length 396 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Brett Lantz Brett Lantz
Author Profile Icon Brett Lantz
Brett Lantz
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Machine Learning with R
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Introducing Machine Learning 2. Managing and Understanding Data FREE CHAPTER 3. Lazy Learning – Classification Using Nearest Neighbors 4. Probabilistic Learning – Classification Using Naive Bayes 5. Divide and Conquer – Classification Using Decision Trees and Rules 6. Forecasting Numeric Data – Regression Methods 7. Black Box Methods – Neural Networks and Support Vector Machines 8. Finding Patterns – Market Basket Analysis Using Association Rules 9. Finding Groups of Data – Clustering with k-means 10. Evaluating Model Performance 11. Improving Model Performance 12. Specialized Machine Learning Topics Index

Chapter 2. Managing and Understanding Data

A key early component of any machine learning project involves managing and understanding the data you have collected. Although you may not find it as gratifying as building and deploying models—the stages in which you begin to see the fruits of your labor—you cannot ignore the preparatory work.

Any learning algorithm is only as good as its input data, and in many cases, input data is complex, messy, and spread across multiple sources and formats. Because of this complexity, the largest portion of effort invested in machine learning projects is spent on the data preparation and exploration process.

This chapter is divided into three main sections. The first section discusses the basic data structures R uses to store data. You will become very familiar with these structures as you create and manipulate datasets. The second section is practical, as it covers several functions that are useful for getting data in and out of R. In the third section, methods...

You have been reading a chapter from
Machine Learning with R
Published in: Oct 2013
Publisher: Packt
ISBN-13: 9781782162148
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime