Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Solutions

You're reading from   Machine Learning Solutions Expert techniques to tackle complex machine learning problems using Python

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788390040
Length 566 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jalaj Thanaki Jalaj Thanaki
Author Profile Icon Jalaj Thanaki
Jalaj Thanaki
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Machine Learning Solutions
Foreword
Contributors
Preface
1. Credit Risk Modeling 2. Stock Market Price Prediction FREE CHAPTER 3. Customer Analytics 4. Recommendation Systems for E-Commerce 5. Sentiment Analysis 6. Job Recommendation Engine 7. Text Summarization 8. Developing Chatbots 9. Building a Real-Time Object Recognition App 10. Face Recognition and Face Emotion Recognition 11. Building Gaming Bot List of Cheat Sheets Strategy for Wining Hackathons Index

Understanding the concepts of face emotion recognition


We are using Convolutional Neural Network (CNN) to develop the FER application. Earlier, we looked at the basic architecture of CNN. In order to develop FER applications, we will be using the following CNN architecture and optimizer. We are building CNN that is two layers deep. We will be using two fully connected layers and the SoftMax function to categorize the facial emotions.

We will be using several layers made of the convolutional layer, followed by the ReLU (Rectified Linear Unit) layer, followed by the max pooling layer. Refer to the following diagram, which will help you conceptualize the arrangement of the CNN layers. Let's look at the working of CNN. We will cover the following layers:

  • The convolutional layer

  • The ReLU layer

  • The pooling layer

  • The fully connected layer

  • The SoftMax layer

Understanding the convolutional layer

In this layer, we will feed our image in the form of pixel values. We are using a sliding window of 3 x 3 dimension...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime