E2E modeling
Our current approach relies on engineered features. As we discussed at the start of this chapter, an alternative method is E2E modeling. In E2E modeling, both raw and unstructured data about a transaction is used. This could include the description text of a transfer, video feeds from cameras monitoring a cash machine, or other sources of data. E2E is often more successful than feature engineering, provided that you have enough data available.
To get valid results, and to successfully train the data with an E2E model it can take millions of examples. Yet, often this is the only way to gain an acceptable result, especially when it is hard to codify the rules for something. Humans can recognize things in images well, but it is hard to come up with exact rules that distinguish things, which is where E2E shines.
In the dataset used for this chapter, we do not have access to more data, but the rest of the chapters of this book demonstrate various E2E models.