Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Engineering  with Python

You're reading from   Machine Learning Engineering with Python Manage the lifecycle of machine learning models using MLOps with practical examples

Arrow left icon
Product type Paperback
Published in Aug 2023
Publisher Packt
ISBN-13 9781837631964
Length 462 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Andrew P. McMahon Andrew P. McMahon
Author Profile Icon Andrew P. McMahon
Andrew P. McMahon
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction to ML Engineering 2. The Machine Learning Development Process FREE CHAPTER 3. From Model to Model Factory 4. Packaging Up 5. Deployment Patterns and Tools 6. Scaling Up 7. Deep Learning, Generative AI, and LLMOps 8. Building an Example ML Microservice 9. Building an Extract, Transform, Machine Learning Use Case 10. Other Books You May Enjoy
11. Index

Summary

This chapter was all about building a solid foundation for future work. We discussed the development steps common to all ML engineering projects, which we called discover, play, develop, deploy. In particular, we outlined the aim of each of these steps and their desired outputs.

This was followed by a high-level discussion of tooling, and a walkthrough of the main setup steps. We set up the tools for developing our code, keeping track of the changes of that code, managing our ML engineering project, and finally, deploying our solutions.

In the rest of the chapter, we went through the details for each of the four stages we outlined previously, with a particular focus on the develop and deploy stages. Our discussion covered everything from the pros and cons of Waterfall and Agile development methodologies to environment management and then software development best practices. We also discussed how to apply testing to our ML code. We finished off with an exploration of how to package...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime