Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

You're reading from   Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization Create user-kernel interfaces, work with peripheral I/O, and handle hardware interrupts

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781801079518
Length 452 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Kaiwan N. Billimoria Kaiwan N. Billimoria
Author Profile Icon Kaiwan N. Billimoria
Kaiwan N. Billimoria
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Section 1: Character Device Driver Basics
2. Writing a Simple misc Character Device Driver FREE CHAPTER 3. User-Kernel Communication Pathways 4. Working with Hardware I/O Memory 5. Handling Hardware Interrupts 6. Working with Kernel Timers, Threads, and Workqueues 7. Section 2: Delving Deeper
8. Kernel Synchronization - Part 1 9. Kernel Synchronization - Part 2 10. Other Books You May Enjoy

Interrupt context guidelines what to do and what not to do

The interrupt handler routine is your typical C code, with some caveats. A few key points regarding the design and implementation of your hardware interrupt handler are as follows:

  • The handler runs in an interrupt context, so do not block: First and foremost, this code always runs in an interrupt context; that is, an atomic context. On a preemptible kernel, preemption is disabled, so there are some limitations regarding what it can and cannot do. In particular, it cannot do anything that directly or indirectly invokes the scheduler (schedule())!
    In effect, you cannot do the following:
    • Transfer data to and from kernel to user space as it might cause a page fault, which isn't allowed in an atomic context.
    • Use the GFP_KERNEL flag in memory allocation. You must use the GFP_ATOMIC flag so that the allocation is non-blocking it either succeeds or fails immediately.
    • Invoke any API that's blocking (that,...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image