Understanding the GCP global infrastructure
Google is one of the biggest cloud service providers in the world. With the physical computing infrastructures such as computers, hard disk drives, routers, and switches in Google’s worldwide data centers, which are connected by Google’s global backbone network, Google provides a full spectrum of cloud services in GCP, including compute, network, database, security, and advanced services such as big data, machine learning (ML), and many, many more.
Within Google’s global cloud infrastructure, there are many data center groups. Each data center group is called a GCP region. These regions are located worldwide, in Asia, Australia, Europe, North America, and South America. These regions are connected by Google’s global backbone network for performance optimization and resiliency. Each GCP region is a collection of zones that are isolated from each other. Each zone has one or more data centers and is identified by a name that combines a letter identifier with the region’s name. For example, zone US-Central1-a is a zone in the US-Central1 region, which is physically located in Council Bluffs, Iowa, the United State of America. In the GCP global infrastructure, there are also many edge locations or points of presence (POPs) where Google’s global networks connect to the internet. More details about GCP regions, zones, and edge locations can be found at https://cloud.google.com/about/locations.
GCP provides on-demand cloud resources at a global scale. These resources can be used together to build solutions that help meet business goals and satisfy technology requirements. For example, if a company needs 1,000 TB of storage in Tokyo, its IT professional can log into their GCP account console and provision the storage in the Asia-northeast1 region at any time. Similarly, a 3,000 TB database can be provisioned in Sydney and a 4,000-node cluster in Frankfurt at any time, with just a few clicks. And finally, if a company wants to set up a global website, such as zeebestbuy.com, with the lowest latencies for their global users, they can build three web servers in the global regions of London, Virginia, and Singapore, and utilize Google’s global DNS service to distribute the web traffic along these three web servers. Depending on the user’s web browser location, DNS will route the traffic to the nearest web server.