Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
IBM Cloud Pak for Data

You're reading from   IBM Cloud Pak for Data An enterprise platform to operationalize data, analytics, and AI

Arrow left icon
Product type Paperback
Published in Nov 2021
Publisher Packt
ISBN-13 9781800562127
Length 336 pages
Edition 1st Edition
Arrow right icon
Authors (3):
Arrow left icon
Hemanth Manda Hemanth Manda
Author Profile Icon Hemanth Manda
Hemanth Manda
Sriram Srinivasan Sriram Srinivasan
Author Profile Icon Sriram Srinivasan
Sriram Srinivasan
Deepak Rangarao Deepak Rangarao
Author Profile Icon Deepak Rangarao
Deepak Rangarao
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: The Basics
2. Chapter 1: The AI Ladder – IBM's Prescriptive Approach FREE CHAPTER 3. Chapter 2: Cloud Pak for Data: A Brief Introduction 4. Section 2: Product Capabilities
5. Chapter 3: Collect – Making Data Simple and Accessible 6. Chapter 4: Organize – Creating a Trusted Analytics Foundation 7. Chapter 5: Analyzing: Building, Deploying, and Scaling Models with Trust and Transparency 8. Chapter 6: Multi-Cloud Strategy and Cloud Satellite 9. Chapter 7: IBM and Partner Extension Services 10. Chapter 8: Customer Use Cases 11. Section 3: Technical Details
12. Chapter 9: Technical Overview, Management, and Administration 13. Chapter 10: Security and Compliance 14. Chapter 11: Storage 15. Chapter 12: Multi-Tenancy 16. Other Books You May Enjoy

AI life cycle – Transforming insights into action

Enterprises going through digital transformation infuse AI into their applications; a well-defined and robust methodology is required to manage the AI pipeline. Traditionally, a cross-industry standard process for data mining (CRISP-DM) methodology was used for ML projects, and it is important to understand this methodology before we explore the challenges faced with the implementation of an AI-driven application and how a more comprehensive AI life cycle will help with this process.

CRISP-DM is an open standard process model that describes the approach and the steps involved in executing data mining projects. It can be broken down into six major phases, as follows:

  • Business understanding
  • Data understanding
  • Data preparation
  • Model building
  • Model evaluation
  • Model deployment

The sequence of these phases is not strict and is often an iterative process. The arrows in the following diagram indicate...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image