Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Data Structures and Algorithms with Python – Third Edition

You're reading from   Hands-On Data Structures and Algorithms with Python – Third Edition Store, manipulate, and access data effectively and boost the performance of your applications

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781801073448
Length 496 pages
Edition 3rd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Dr. Basant Agarwal Dr. Basant Agarwal
Author Profile Icon Dr. Basant Agarwal
Dr. Basant Agarwal
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Python Data Types and Structures FREE CHAPTER 2. Introduction to Algorithm Design 3. Algorithm Design Techniques and Strategies 4. Linked Lists 5. Stacks and Queues 6. Trees 7. Heaps and Priority Queues 8. Hash Tables 9. Graphs and Algorithms 10. Searching 11. Sorting 12. Selection Algorithms 13. String Matching Algorithms 14. Other Books You May Enjoy
15. Index
Appendix: Answers to the Questions

What this book covers

Chapter 1, Python Data Types and Structures, introduces the basic data types and structures in Python. It will provide an overview of several built-in data structures available in Python that are pivotal for understanding the internals of data structures.

Chapter 2, Introduction to Algorithm Design, provides details about algorithm design issues and techniques. This chapter will compare different analyzing algorithms via running time and computation complexity, which will tell us which ones perform better than others for a given problem.

Chapter 3, Algorithm Design Techniques and Strategies, covers various important data structure design paradigms such as greedy algorithms, dynamic programming, divide-and-conquer. We will learn to create data structures via a number of primary principles, such as robustness, adaptability and reusability, and learn to separate structure from a function.

Chapter 4, Linked Lists, covers linked lists, which are one of the most common data structures and are often used to implement other structures, such as stacks and queues. In this chapter, we describe linked lists, their operation, and implementation. We compare their behavior to arrays and discuss the relative advantages and disadvantages of each.

Chapter 5, Stacks and Queues, describes stack and queue data structures in detail. It also discusses the behavior and demonstrates some implementations of these linear data structures. We give examples of typical real-life example applications.

Chapter 6, Trees, considers how trees form the basis of many of the most important advanced data structures. In this chapter we look at how to implement a binary tree. We will examine how to traverse trees and retrieve and insert values.

Chapter 7, Heaps and Priority Queues, looks into priority queues as important data structures and shows how to implement them using heap.

Chapter 8, Hash Tables, describes symbol tables, gives some typical implementations, and discusses various applications. We will look at the process of hashing, give an implementation of a hash table, and discuss the various design considerations.

Chapter 9, Graphs and Algorithms, looks at some of the more specialized structures, including graphs and spatial structures. We will learn to represent data through nodes and vertices and create structures such as directed and undirected graphs. We will also learn different algorithms for minimum spanning trees such as Prim’s algorithm and Kruskal’s algorithm.

Chapter 10, Searching, discusses the most common searching algorithms including, binary search and interpolation searching algorithms. We also give examples of their use for various data structures. Searching a data structure is a fundamental task and there are a number of approaches.

Chapter 11, Sorting, looks at the most common approaches to sorting. This will include bubble sort, insertion sort, selection sort, quick sort, and heap sort algorithms with detailed explanations, along with their Python implementations.

Chapter 12, Selection Algorithms, discusses how selection algorithms are commonly used to find the ith smallest element from the list. It is an important operation related to sorting algorithms, and broadly related to the data structures and algorithms.

Chapter 13, String Matching Algorithms, covers basic concepts and definitions related to strings. In this chapter, various string and pattern matching algorithms are discussed in detail such as the naïve approach, and the Knuth-Morris-Pratt (KMP) and Boyer-Moore pattern matching algorithms.

Appendix, Answers to the Questions, provides answers to the exercises at the end of each chapter. Please feel free to check the appendix at the end of the book.

There is also bonus content available online related to tree algorithms at https://static.packt-cdn.com/downloads/9781801073448_Bonus_Content.pdf.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime