Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Game Physics Cookbook

You're reading from   Game Physics Cookbook Discover over 100 easy-to-follow recipes to help you implement efficient game physics and collision detection in your games

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781787123663
Length 480 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Gabor Szauer Gabor Szauer
Author Profile Icon Gabor Szauer
Gabor Szauer
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Vectors FREE CHAPTER 2. Matrices 3. Matrix Transformations 4. 2D Primitive Shapes 5. 2D Collisions 6. 2D Optimizations 7. 3D Primitive Shapes 8. 3D Point Tests 9. 3D Shape Intersections 10. 3D Line Intersections 11. Triangles and Meshes 12. Models and Scenes 13. Camera and Frustum 14. Constraint Solving 15. Manifolds and Impulses 16. Springs and Joints A. Advanced Topics Index

Introduction

At this point, we know what the basic 2D primitive shapes are; now it's time to explore if two of them intersect. Some of these intersections are going to be simple to find, others will be a bit more challenging. For example, checking if two spheres intersect takes only a few lines of code, checking if two oriented boxes intersect requires much more work

We are going to cover the Separating Axis Theorem (SAT), more accurately the Hyperspace Separation Theorem in this chapter. The SAT is used to detect collision between arbitrary convex polygons. This makes the SAT algorithm an ideal generac purpose collision algorithm.

A convex polygon is one which does not fold in on its self. If you were to take every vertex of a polygon and stretch a rubber band around all the vertices, you would end up with a convex shape. In a convex polygon, a line between any two points on the polygon never goes outside of the polygon.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image