Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Effective Concurrency in Go

You're reading from   Effective Concurrency in Go Develop, analyze, and troubleshoot high performance concurrent applications with ease

Arrow left icon
Product type Paperback
Published in Apr 2023
Publisher Packt
ISBN-13 9781804619070
Length 212 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Burak Serdar Burak Serdar
Author Profile Icon Burak Serdar
Burak Serdar
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Concurrency – A High-Level Overview 2. Chapter 2: Go Concurrency Primitives FREE CHAPTER 3. Chapter 3: The Go Memory Model 4. Chapter 4: Some Well-Known Concurrency Problems 5. Chapter 5: Worker Pools and Pipelines 6. Chapter 6: Error Handling 7. Chapter 7: Timers and Tickers 8. Chapter 8: Handling Requests Concurrently 9. Chapter 9: Atomic Memory Operations 10. Chapter 10: Troubleshooting Concurrency Issues 11. Index 12. Other Books You May Enjoy

Memory guarantees

Why do we need separate functions for atomic memory operations? If we write to a variable whose size is less or equal to the machine word size (which is what the int type is defined to be), such as a=1, wouldn’t that be atomic? The Go memory model actually guarantees that the write operation will be atomic; however, it does not guarantee when other goroutines will see the effects of that write operation, if ever. Let’s try to dissect what this statement means. The first part simply says that if you write to a shared memory location that is the same size as a machine word (i.e., int) from one goroutine and read it from another, you will not observe some random value even if there is a race. The memory model guarantees that you will only observe the value before the write operation, or the value after it (this is not true for all languages.) This also means that if the write operation is larger than the machine word size, then a goroutine reading this...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime