Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Driving Data Quality with Data Contracts

You're reading from   Driving Data Quality with Data Contracts A comprehensive guide to building reliable, trusted, and effective data platforms

Arrow left icon
Product type Paperback
Published in Jun 2023
Publisher Packt
ISBN-13 9781837635009
Length 206 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Andrew Jones Andrew Jones
Author Profile Icon Andrew Jones
Andrew Jones
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: Why Data Contracts?
2. Chapter 1: A Brief History of Data Platforms FREE CHAPTER 3. Chapter 2: Introducing Data Contracts 4. Part 2: Driving Data Culture Change with Data Contracts
5. Chapter 3: How to Get Adoption in Your Organization 6. Chapter 4: Bringing Data Consumers and Generators Closer Together 7. Chapter 5: Embedding Data Governance 8. Part 3: Designing and Implementing a Data Architecture Based on Data Contracts
9. Chapter 6: What Makes Up a Data Contract 10. Chapter 7: A Contract-Driven Data Architecture 11. Chapter 8: A Sample Implementation 12. Chapter 9: Implementing Data Contracts in Your Organization 13. Chapter 10: Data Contracts in Practice 14. Index 15. Other Books You May Enjoy

Creating a data contract

We’ll start by defining a specification for data generators to create a data contract. We’ll discuss why we have chosen to define it in this way, and how it acts as the foundation of our sample implementation.

We’ll be using this data contract to drive the contract-driven architecture we’ll be building out in this chapter. It will be the foundation that drives the following resources and services:

  • A BigQuery table, acting as the interface to the data.
  • Code libraries for the data generators to use, by converting our data contract to JSON Schema and using existing open source libraries.
  • A schema registry, so the schemas are available to others. Again, we used our JSON Schema representation of the data contract to interact with that.
  • An anonymization service, which uses the data contract directly to anonymize some data.

The following diagram shows how each of these resources is driven by the data contract...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime