Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with MXNet Cookbook

You're reading from   Deep Learning with MXNet Cookbook Discover an extensive collection of recipes for creating and implementing AI models on MXNet

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781800569607
Length 370 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Andrés P. Torres Andrés P. Torres
Author Profile Icon Andrés P. Torres
Andrés P. Torres
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Up and Running with MXNet FREE CHAPTER 2. Chapter 2: Working with MXNet and Visualizing Datasets – Gluon and DataLoader 3. Chapter 3: Solving Regression Problems 4. Chapter 4: Solving Classification Problems 5. Chapter 5: Analyzing Images with Computer Vision 6. Chapter 6: Understanding Text with Natural Language Processing 7. Chapter 7: Optimizing Models with Transfer Learning and Fine-Tuning 8. Chapter 8: Improving Training Performance with MXNet 9. Chapter 9: Improving Inference Performance with MXNet 10. Index 11. Other Books You May Enjoy

Detecting objects with MXNet – Faster R-CNN and YOLO

In this recipe, we will see how to use MXNet and GluonCV on a pre-trained model to detect objects from a dataset. We will see how to use GluonCV Model Zoo with two very important models for object detectionFaster R-CNN and YOLOv3.

In this recipe, we will compare the performance of these two pre-trained models to detect objects on the Penn-Fudan Pedestrians dataset.

Getting ready

As for previous chapters, in this recipe, we will be using a few matrix operations and linear algebra, but it will not be too difficult.

As we will unpack in this recipe, object detection combines classification and regression, and therefore, chapters and recipes where we explored the foundations of these topics are recommended to revisit. Furthermore, we will be detecting objects on image datasets. This recipe will combine what we learned in the following chapters:

  • Understanding image datasets: load, manage, and visualize...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image