Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Databricks Certified Associate Developer for Apache Spark Using Python

You're reading from   Databricks Certified Associate Developer for Apache Spark Using Python The ultimate guide to getting certified in Apache Spark using practical examples with Python

Arrow left icon
Product type Paperback
Published in Jun 2024
Publisher Packt
ISBN-13 9781804619780
Length 274 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Saba Shah Saba Shah
Author Profile Icon Saba Shah
Saba Shah
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1: Exam Overview
2. Chapter 1: Overview of the Certification Guide and Exam FREE CHAPTER 3. Part 2: Introducing Spark
4. Chapter 2: Understanding Apache Spark and Its Applications 5. Chapter 3: Spark Architecture and Transformations 6. Part 3: Spark Operations
7. Chapter 4: Spark DataFrames and their Operations 8. Chapter 5: Advanced Operations and Optimizations in Spark 9. Chapter 6: SQL Queries in Spark 10. Part 4: Spark Applications
11. Chapter 7: Structured Streaming in Spark 12. Chapter 8: Machine Learning with Spark ML 13. Part 5: Mock Papers
14. Chapter 9: Mock Test 1
15. Chapter 10: Mock Test 2
16. Index 17. Other Books You May Enjoy

Spark components

Let’s dive into the inner workings of each Spark component to understand how each of them plays a crucial role in empowering efficient distributed data processing.

Spark driver

The Spark driver is the core of the intelligent and efficient computations in Spark. Spark follows an architecture that is commonly known as the master-worker architecture in network topology. Consider the Spark driver as a master and Spark executors as slaves. The driver has control and knowledge of all the executors at any given time. It is the responsibility of the driver to know how many executors are present and if any executor has failed so that it can fall back on its alternative. The Spark driver also maintains communication with executors all the time. The driver runs on the master node of a machine or cluster. When a Spark application starts running, the driver keeps up with all the required information that is needed to run the application successfully.

As shown in...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image