Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Forecasting and Segmentation Using Microsoft Excel

You're reading from   Data Forecasting and Segmentation Using Microsoft Excel Perform data grouping, linear predictions, and time series machine learning statistics without using code

Arrow left icon
Product type Paperback
Published in May 2022
Publisher Packt
ISBN-13 9781803247731
Length 324 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Fernando Roque Fernando Roque
Author Profile Icon Fernando Roque
Fernando Roque
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1 – An Introduction to Machine Learning Functions
2. Chapter 1: Understanding Data Segmentation FREE CHAPTER 3. Chapter 2: Applying Linear Regression 4. Chapter 3: What is Time Series? 5. Part 2 – Grouping Data to Find Segments and Outliers
6. Chapter 4: Introduction to Data Grouping 7. Chapter 5: Finding the Optimal Number of Single Variable Groups 8. Chapter 6: Finding the Optimal Number of Multi-Variable Groups 9. Chapter 7: Analyzing Outliers for Data Anomalies 10. Part 3 – Simple and Multiple Linear Regression Analysis
11. Chapter 8: Finding the Relationship between Variables 12. Chapter 9: Building, Training, and Validating a Linear Model 13. Chapter 10: Building, Training, and Validating a Multiple Regression Model 14. Part 4 – Predicting Values with Time Series
15. Chapter 11: Testing Data for Time Series Compliance 16. Chapter 12: Working with Time Series Using the Centered Moving Average and a Trending Component 17. Chapter 13: Training, Validating, and Running the Model 18. Other Books You May Enjoy

Answers

Here are the answers to the preceding questions:

  1. The first input value is the coefficient of determination. Its formula is the explained variation divided by the total variation. The second input value is the sign of the slope. If it is positive, the relationship is direct. If not, the relationship is inverse.
  2. t-statistics tell us whether the null hypothesis that the slope is equal to zero can be rejected. The slope with a non-zero value means a relationship between the variables. This is the alternative hypothesis.
  3. The model just gives trends, not exact results. The scenarios give us an idea of the range of values that the model predicts. It helps to analyze whether the results make sense or not, based on our experience.
  4. The unexplained variation or errors of the linear model is the distance of the model from the expected values. These distances must be short to have an effective predictor model. If it is not, the worst-case scenario is a high standard...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime