Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Engineering with AWS

You're reading from   Data Engineering with AWS Acquire the skills to design and build AWS-based data transformation pipelines like a pro

Arrow left icon
Product type Paperback
Published in Oct 2023
Publisher Packt
ISBN-13 9781804614426
Length 636 pages
Edition 2nd Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Gareth Eagar Gareth Eagar
Author Profile Icon Gareth Eagar
Gareth Eagar
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Section 1: AWS Data Engineering Concepts and Trends
2. An Introduction to Data Engineering FREE CHAPTER 3. Data Management Architectures for Analytics 4. The AWS Data Engineer’s Toolkit 5. Data Governance, Security, and Cataloging 6. Section 2: Architecting and Implementing Data Engineering Pipelines and Transformations
7. Architecting Data Engineering Pipelines 8. Ingesting Batch and Streaming Data 9. Transforming Data to Optimize for Analytics 10. Identifying and Enabling Data Consumers 11. A Deeper Dive into Data Marts and Amazon Redshift 12. Orchestrating the Data Pipeline 13. Section 3: The Bigger Picture: Data Analytics, Data Visualization, and Machine Learning
14. Ad Hoc Queries with Amazon Athena 15. Visualizing Data with Amazon QuickSight 16. Enabling Artificial Intelligence and Machine Learning 17. Section 4: Modern Strategies: Open Table Formats, Data Mesh, DataOps, and Preparing for the Real World
18. Building Transactional Data Lakes 19. Implementing a Data Mesh Strategy 20. Building a Modern Data Platform on AWS 21. Wrapping Up the First Part of Your Learning Journey 22. Other Books You May Enjoy
23. Index

The rise of big data as a corporate asset

You don’t need to look too far or too hard to hear about the many ways that big data and data analytics are transforming organizations and having an impact on society as a whole. We hear about how companies such as TikTok analyze large quantities of data to make personalized recommendations about which video clip to show a user next. We also read countless articles about how the new generation of chatbots (like ChatGPT from OpenAI or Bard from Google) have been trained on massive datasets, and as a result, are able to have human-like conversations on a wide range of topics. We experience how companies like Amazon and Netflix are able to recommend products or videos we may be interested in, based on our purchase and viewing history. All of these companies have innovated and added customer value by performing complex analyses on very large datasets.

We also see the importance of data in large companies, as demonstrated by those companies creating a new executive C-level position – the Chief Data Officer (CDO). According to an article (https://hbr.org/2021/08/why-do-chief-data-officers-have-such-short-tenures) in the Harvard Business Review, the role of CDO was first established by Capital One (a technology-driven U.S. bank) in 2002. By 2012, it was estimated that 12% of firms had a CDO according to a NewVantage Partners survey, and by 2021, this had grown to 65% of firms having a CDO.

There is no doubt that data, when harnessed correctly and optimized for maximum analytic value, can be a game-changer for an organization. At the same time, those companies that are unable to effectively utilize their data assets risk losing a competitive advantage to others that do have a comprehensive data strategy and effective analytic and machine learning programs.

Organizations today tend to be in one of the following three states:

  • They have an effective and modernized data analytics and machine learning program that differentiates them from their competitors.
  • They are conducting proof of concept projects to evaluate how modernizing their analytic and machine learning programs can help them achieve a competitive advantage.
  • Their leaders are having sleepless nights worrying about how their competitors are using new analytics and machine learning programs to achieve a competitive advantage over them.

No matter where an organization is in its data journey, if it has been in existence for a while, it has likely faced a number of common data-related challenges. Let’s look at how organizations have typically handled the challenge of ever-growing datasets.

You have been reading a chapter from
Data Engineering with AWS - Second Edition
Published in: Oct 2023
Publisher: Packt
ISBN-13: 9781804614426
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image