Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Augmentation with Python

You're reading from   Data Augmentation with Python Enhance deep learning accuracy with data augmentation methods for image, text, audio, and tabular data

Arrow left icon
Product type Paperback
Published in Apr 2023
Publisher Packt
ISBN-13 9781803246451
Length 394 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Duc Haba Duc Haba
Author Profile Icon Duc Haba
Duc Haba
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Data Augmentation
2. Chapter 1: Data Augmentation Made Easy FREE CHAPTER 3. Chapter 2: Biases in Data Augmentation 4. Part 2: Image Augmentation
5. Chapter 3: Image Augmentation for Classification 6. Chapter 4: Image Augmentation for Segmentation 7. Part 3: Text Augmentation
8. Chapter 5: Text Augmentation 9. Chapter 6: Text Augmentation with Machine Learning 10. Part 4: Audio Data Augmentation
11. Chapter 7: Audio Data Augmentation 12. Chapter 8: Audio Data Augmentation with Spectrogram 13. Part 5: Tabular Data Augmentation
14. Chapter 9: Tabular Data Augmentation 15. Index 16. Other Books You May Enjoy

Reinforcing your learning

The key objectives of the _audio_transform() helper function are selecting a random clip, performing the augmentation using the Audiomentations library function, displaying the WaveForm graph using the _fetch_audio_data() and _draw_audio() helper functions, and showing the audio play button. The key code lines are as follows:

# code snippet, use Pandas to select a random/sample record
p = df.sample(dsize)
# fetch the audio data
data_amp, sam_rate, fname = self._fetch_audio_data(lname)
# do the transformation
xaug = xtransform(data_amp, sample_rate=sam_rate)
# display the Waveform graphs and the audio play button
self._draw_audio(xaug, sam_rate, title + ' Augmented: ' + fname)
display(IPython.display.Audio(xaug, rate=sam_rate))

The full function’s code can be found in the Python Notebook. Pluto will write the Python wrapper functions for audio augmentation in the same order as previously discussed. In particular, they are as follows:

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image