Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Data Augmentation with Python

You're reading from   Data Augmentation with Python Enhance deep learning accuracy with data augmentation methods for image, text, audio, and tabular data

Arrow left icon
Product type Paperback
Published in Apr 2023
Publisher Packt
ISBN-13 9781803246451
Length 394 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Duc Haba Duc Haba
Author Profile Icon Duc Haba
Duc Haba
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Data Augmentation
2. Chapter 1: Data Augmentation Made Easy FREE CHAPTER 3. Chapter 2: Biases in Data Augmentation 4. Part 2: Image Augmentation
5. Chapter 3: Image Augmentation for Classification 6. Chapter 4: Image Augmentation for Segmentation 7. Part 3: Text Augmentation
8. Chapter 5: Text Augmentation 9. Chapter 6: Text Augmentation with Machine Learning 10. Part 4: Audio Data Augmentation
11. Chapter 7: Audio Data Augmentation 12. Chapter 8: Audio Data Augmentation with Spectrogram 13. Part 5: Tabular Data Augmentation
14. Chapter 9: Tabular Data Augmentation 15. Index 16. Other Books You May Enjoy

Computational biases

Before we start, a fair warning is that you will not be learning how to write Python code to calculate a numeric score for computational bias in datasets. The primary focus of this chapter is to help you learn how to fetch real-world datasets from the Kaggle website and use observation to spot biases in data. There will be some coding to calculate the fairness or balance in the datasets.

For example, we will compute the word counts per record and the misspelled words in the text datasets.

You may think all biases are the same, but it helps to break them into three distinct categories. The bias categories’ differences can be subtle when first reading about data biases. One method to help distinguish the differences is to think about how you could remove or reduce the error in AI forecasting. For example, computational biases can be resolved by changing the datasets, while systemic biases can be fixed by changing the deployment and access strategy of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image