If you have labeled data, you can train a model to detect whether the data is normal or abnormal. For example, reading the current of an electric motor can show when extra drag is put on the motor by such things as failing ball bearings or other failing hardware. In IoT, anomalies can be a previously known phenomenon or a new event that has not been seen before. As the name suggests, autoencoders take in data and encode it to an output. With anomaly detection, we see whether a model can determine whether data is non-anomalous. In this recipe, we are going to use a Python object detection library called pyod.
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine