Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Apache Spark 2.x Cookbook

You're reading from   Apache Spark 2.x Cookbook Over 70 cloud-ready recipes for distributed Big Data processing and analytics

Arrow left icon
Product type Paperback
Published in May 2017
Publisher
ISBN-13 9781787127265
Length 294 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Rishi Yadav Rishi Yadav
Author Profile Icon Rishi Yadav
Rishi Yadav
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Apache Spark FREE CHAPTER 2. Developing Applications with Spark 3. Spark SQL 4. Working with External Data Sources 5. Spark Streaming 6. Getting Started with Machine Learning 7. Supervised Learning with MLlib — Regression 8. Supervised Learning with MLlib — Classification 9. Unsupervised Learning 10. Recommendations Using Collaborative Filtering 11. Graph Processing Using GraphX and GraphFrames 12. Optimizations and Performance Tuning

Doing classification with Naïve Bayes


Let's consider building an e-mail spam filter using machine learning. Here we are interested in two classes: spam for unsolicited messages and non-spam for regular e-mails:

The first challenge is that given an e-mail, how do we represent it as feature vector x. An e-mail is just a bunch of text or a collection of words (therefore, this problem domain falls into a broader category called text classification). Let's represent an e-mail with a feature vector with the length equal to the size of the dictionary. If a given word in a dictionary appears in an e-mail, the value will be 1, otherwise 0. Let's build a vector representing the e-mail with the online pharmacy sale content:

The dictionary of words in this feature vector is called vocabulary, and the dimensions of the vector are the same as the size of the vocabulary. If the vocabulary size is 10,000, the possible values in this feature vector will be 210,000.

Our goal is to model the probability of x...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime