This chapter illustrates the application of generative adversarial networks (GANs) for generating new images using a practical example. So far in this book, using image data, we have illustrated the use of deep networks for image classification tasks. However, in this chapter, we will explore an interesting and popular approach that helps create new images. Generative adversarial networks have been applied for generating new images, improving image quality, and generating new text and new music. Another interesting application of GANs is in the area of anomaly detection. Here, a GAN is trained to generate data that is considered normal. When this network is used for reconstructing data that is considered not normal or anomalous, the differences in results can help us detect the presence of an anomaly. We will look at an...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand