Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Transformers for Natural Language Processing

You're reading from   Transformers for Natural Language Processing Build, train, and fine-tune deep neural network architectures for NLP with Python, Hugging Face, and OpenAI's GPT-3, ChatGPT, and GPT-4

Arrow left icon
Product type Paperback
Published in Mar 2022
Publisher Packt
ISBN-13 9781803247335
Length 602 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Denis Rothman Denis Rothman
Author Profile Icon Denis Rothman
Denis Rothman
Arrow right icon
View More author details
Toc

Table of Contents (25) Chapters Close

Preface 1. What are Transformers? FREE CHAPTER 2. Getting Started with the Architecture of the Transformer Model 3. Fine-Tuning BERT Models 4. Pretraining a RoBERTa Model from Scratch 5. Downstream NLP Tasks with Transformers 6. Machine Translation with the Transformer 7. The Rise of Suprahuman Transformers with GPT-3 Engines 8. Applying Transformers to Legal and Financial Documents for AI Text Summarization 9. Matching Tokenizers and Datasets 10. Semantic Role Labeling with BERT-Based Transformers 11. Let Your Data Do the Talking: Story, Questions, and Answers 12. Detecting Customer Emotions to Make Predictions 13. Analyzing Fake News with Transformers 14. Interpreting Black Box Transformer Models 15. From NLP to Task-Agnostic Transformer Models 16. The Emergence of Transformer-Driven Copilots 17. The Consolidation of Suprahuman Transformers with OpenAI’s ChatGPT and GPT-4 18. Other Books You May Enjoy
19. Index
Appendix I — Terminology of Transformer Models 1. Appendix II — Hardware Constraints for Transformer Models 2. Appendix III — Generic Text Completion with GPT-2 3. Appendix IV — Custom Text Completion with GPT-2 4. Appendix V — Answers to the Questions

Summary

The Fourth Industrial Revolution, or Industry 4.0, has forced artificial intelligence to make profound evolutions. The Third Industrial Revolution was digital. Industry 4.0 is built on top of the digital revolution connecting everything to everything, everywhere. Automated processes are replacing human decisions in critical areas, including NLP.

RNNs had limitations that slowed the progression of automated NLP tasks required in a fast-moving world. Transformers filled the gap. A corporation needs summarization, translation, and a wide range of NLP tools to meet the challenges of Industry 4.0.

Industry 4.0 (I4.0) has thus spurred an age of artificial intelligence industrialization. The evolution of the concepts of platforms, frameworks, language, and models represents a challenge for an industry 4.0 developer. Foundation models bridge the gap between the Third Industrial Revolution and I4.0 by providing homogenous models that can carry out a wide range of tasks without further training or fine-tuning.

Websites such as AllenNLP, for example, provide educational NLP tasks with no installation, but it also provides resources to implement a transformer model in customized programs. OpenAI provides an API requiring only a few code lines to run one of the powerful GPT-3 engines. Google Trax provides an end-to-end library, and Hugging Face offers various transformer models and implementations. We will be exploring these ecosystems throughout this book.

Industry 4.0 is a radical deviation from former AI with a broader skillset. For example, a project manager can decide to implement transformers by asking a web designer to create an interface for OpenAI’s API through prompt engineering. Or, when required, a project manager can ask an artificial intelligence specialist to download Google Trax or Hugging Face to develop a full-blown project with a customized transformer model.

Industry 4.0 is a game-changer for developers whose role will expand and require more designing than programming. In addition, embedded transformers will provide assisted code development and usage. These new skillsets are a challenge but open new exciting horizons.

In Chapter 2, Getting Started with the Architecture of the Transformer Model, we will get started with the architecture of the original Transformer.

You have been reading a chapter from
Transformers for Natural Language Processing - Second Edition
Published in: Mar 2022
Publisher: Packt
ISBN-13: 9781803247335
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image