Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
The DevOps 2.5 Toolkit

You're reading from   The DevOps 2.5 Toolkit Monitoring, Logging, and Auto-Scaling Kubernetes: Making Resilient, Self-Adaptive, And Autonomous Kubernetes Clusters

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781838647513
Length 322 pages
Edition 1st Edition
Concepts
Arrow right icon
Author (1):
Arrow left icon
Viktor Farcic Viktor Farcic
Author Profile Icon Viktor Farcic
Viktor Farcic
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

1. Autoscaling Deployments and StatefulSets Based on Resource Usage FREE CHAPTER 2. Auto-scaling Nodes of a Kubernetes Cluster 3. Collecting and Querying Metrics and Sending Alerts 4. Debugging Issues Discovered Through Metrics and Alerts 5. Extending HorizontalPodAutoscaler with Custom Metrics 6. Visualizing Metrics and Alerts 7. Collecting and Querying Logs 8. What Did We Do? 9. Other Books You May Enjoy

Comparing actual resource usage with defined limits

Knowing when a container uses too much or too few resources compared to requests helps us be more precise with resource definitions and, ultimately, help Kubernetes make better decisions where to schedule our Pods. In most cases, having too big of a discrepancy between requested and actual resource usage will not result in malfunctioning. Instead, it is more likely to result in an unbalanced distribution of Pods or in having more nodes than we need. Limits, on the other hand, are a different story.

If resource usage of our containers enveloped as Pods reaches the specified limits, Kubernetes might kill those containers if there's not enough memory for all. It does that as a way to protect the integrity of the rest of the system. Killed Pods are not a permanent problem since Kubernetes will almost immediately reschedule them...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image