Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
ROS Robotics By Example, Second Edition

You're reading from   ROS Robotics By Example, Second Edition Learning to control wheeled, limbed, and flying robots using ROS Kinetic Kame

Arrow left icon
Product type Paperback
Published in Nov 2017
Publisher Packt
ISBN-13 9781788479592
Length 484 pages
Edition 2nd Edition
Languages
Tools
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Dr. Thomas L. Harman Dr. Thomas L. Harman
Author Profile Icon Dr. Thomas L. Harman
Dr. Thomas L. Harman
Lentin Joseph Lentin Joseph
Author Profile Icon Lentin Joseph
Lentin Joseph
Carol Fairchild Carol Fairchild
Author Profile Icon Carol Fairchild
Carol Fairchild
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with ROS FREE CHAPTER 2. Creating Your First Two-Wheeled ROS Robot (in Simulation) 3. Driving Around with TurtleBot 4. Navigating the World with TurtleBot 5. Creating Your First Robot Arm (in Simulation) 6. Wobbling Robot Arms Using Joint Control 7. Making a Robot Fly 8. Controlling Your Robots with External Devices 9. Flying a Mission with Crazyflie 10. Controlling Baxter with MATLAB© Index

Introducing rviz

Rviz, abbreviation for ROS visualization, is a powerful 3D visualization tool for ROS. It allows the user to view the robot model, display and/or log sensor information from the robot's sensors, and replay the logged sensor information. By visualizing what the robot is seeing, thinking, and doing, the user can debug a robot application from sensor inputs to planned (or unplanned) actions.

Rviz displays 3D sensor data from stereo cameras, lasers, Kinects, and other 3D devices in the form of point clouds or depth images. 2D sensor data from webcams, RGB cameras, and 2D laser rangefinders can be viewed in rviz as image data.

If an actual robot is communicating with a workstation that is running rviz, rviz will display the robot's current configuration on the virtual robot model. For example, if a real two-armed robot like Baxter has his arms in a certain pose, then the robot model will display that pose in rviz. The ROS topic containing arm configuration information...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image