Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
RAG-Driven Generative AI

You're reading from   RAG-Driven Generative AI Build custom retrieval augmented generation pipelines with LlamaIndex, Deep Lake, and Pinecone

Arrow left icon
Product type Paperback
Published in Sep 2024
Publisher Packt
ISBN-13 9781836200918
Length 334 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Denis Rothman Denis Rothman
Author Profile Icon Denis Rothman
Denis Rothman
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Why Retrieval Augmented Generation? FREE CHAPTER 2. RAG Embedding Vector Stores with Deep Lake and OpenAI 3. Building Index-Based RAG with LlamaIndex, Deep Lake, and OpenAI 4. Multimodal Modular RAG for Drone Technology 5. Boosting RAG Performance with Expert Human Feedback 6. Scaling RAG Bank Customer Data with Pinecone 7. Building Scalable Knowledge-Graph-Based RAG with Wikipedia API and LlamaIndex 8. Dynamic RAG with Chroma and Hugging Face Llama 9. Empowering AI Models: Fine-Tuning RAG Data and Human Feedback 10. RAG for Video Stock Production with Pinecone and OpenAI 11. Other Books You May Enjoy
12. Index
Appendix

Pipeline 3: RAG generative AI

In this section, we will use RAG generative AI to automate a customized and engaging marketing message to the customers of the bank to encourage them to remain loyal. We will be building on our programs on data preparation and Pinecone indexing; we will leverage the Pinecone vector database for advanced search functionalities. We will choose a target vector that represents a market segment to query the Pinecone index. The response will be processed to extract the top k similar vectors. We will then augment the user input with this target market to ask OpenAI to make recommendations to the market segment targeted with customized messages.

You may open Pipeline-3_RAG_Generative AI.ipynb on GitHub. The first code section in this notebook, Installing the environment, is the same as in 2-Pincone_vector_store-1M.ipynb, built in the Pipeline 2: Scaling a Pinecone index (vector store) section earlier in this chapter. The Pinecone index in the second code...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime