Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Deep Learning at Scale with MLflow

You're reading from   Practical Deep Learning at Scale with MLflow Bridge the gap between offline experimentation and online production

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781803241333
Length 288 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Yong Liu Yong Liu
Author Profile Icon Yong Liu
Yong Liu
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1 - Deep Learning Challenges and MLflow Prime FREE CHAPTER
2. Chapter 1: Deep Learning Life Cycle and MLOps Challenges 3. Chapter 2: Getting Started with MLflow for Deep Learning 4. Section 2 –
Tracking a Deep Learning Pipeline at Scale
5. Chapter 3: Tracking Models, Parameters, and Metrics 6. Chapter 4: Tracking Code and Data Versioning 7. Section 3 –
Running Deep Learning Pipelines at Scale
8. Chapter 5: Running DL Pipelines in Different Environments 9. Chapter 6: Running Hyperparameter Tuning at Scale 10. Section 4 –
Deploying a Deep Learning Pipeline at Scale
11. Chapter 7: Multi-Step Deep Learning Inference Pipeline 12. Chapter 8: Deploying a DL Inference Pipeline at Scale 13. Section 5 – Deep Learning Model Explainability at Scale
14. Chapter 9: Fundamentals of Deep Learning Explainability 15. Chapter 10: Implementing DL Explainability with MLflow 16. Other Books You May Enjoy

Chapter 9: Fundamentals of Deep Learning Explainability

Explainability is providing selective human-understandable explanations for a decision provided by an automated system. In the context of this book, during the full life cycle of deep learning (DL) development, explainability should be emphasized as a first-class artifact, along with the other three pillars: data, code, and model. This is because different stakeholders and regulators, model developers, and final consumers of the model output may have different needs to understand how the data is used and why the model produces certain predictions or classifications. Without such understanding, it will be difficult to gain the trust of the consumers of the model output or to diagnose what could have gone wrong when model output results drift. This also means that explainability tools should be employed not only for explaining prediction results from a deployed model in production or during offline experimentation, but also for...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime