Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Convolutional Neural Networks

You're reading from   Practical Convolutional Neural Networks Implement advanced deep learning models using Python

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788392303
Length 218 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Mohit Sewak Mohit Sewak
Author Profile Icon Mohit Sewak
Mohit Sewak
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Pradeep Pujari Pradeep Pujari
Author Profile Icon Pradeep Pujari
Pradeep Pujari
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Deep Neural Networks – Overview 2. Introduction to Convolutional Neural Networks FREE CHAPTER 3. Build Your First CNN and Performance Optimization 4. Popular CNN Model Architectures 5. Transfer Learning 6. Autoencoders for CNN 7. Object Detection and Instance Segmentation with CNN 8. GAN: Generating New Images with CNN 9. Attention Mechanism for CNN and Visual Models 10. Other Books You May Enjoy

Feature matching


The idea of feature matching is to add an extra variable to the cost function of the generator in order to penalize the difference between absolute errors in the test data and training data.

Semi-supervised classification using a GAN example

In this section, we explain how to use GAN to build a classifier with the semi-supervised learning approach.

In supervised learning, we have a training set of inputs X and class labels y. We train a model that takes X as input and gives y as output.

In semi-supervised learning, our goal is still to train a model that takes X as input and generates y as output. However, not all of our training examples have a label y. ;

We use the SVHN dataset. We'll turn the GAN discriminator into an 11 class discriminator (0 to 9 and one label for the fake image). It will recognize the 10 different classes of real SVHN digits, as well as an eleventh class of fake images that come from the generator. The discriminator will get to train on real labeled images...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime