Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Practical Automated Machine Learning Using H2O.ai

You're reading from   Practical Automated Machine Learning Using H2O.ai Discover the power of automated machine learning, from experimentation through to deployment to production

Arrow left icon
Product type Paperback
Published in Sep 2022
Publisher Packt
ISBN-13 9781801074520
Length 396 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Salil Ajgaonkar Salil Ajgaonkar
Author Profile Icon Salil Ajgaonkar
Salil Ajgaonkar
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1 H2O AutoML Basics
2. Chapter 1: Understanding H2O AutoML Basics FREE CHAPTER 3. Chapter 2: Working with H2O Flow (H2O’s Web UI) 4. Part 2 H2O AutoML Deep Dive
5. Chapter 3: Understanding Data Processing 6. Chapter 4: Understanding H2O AutoML Architecture and Training 7. Chapter 5: Understanding AutoML Algorithms 8. Chapter 6: Understanding H2O AutoML Leaderboard and Other Performance Metrics 9. Chapter 7: Working with Model Explainability 10. Part 3 H2O AutoML Advanced Implementation and Productization
11. Chapter 8: Exploring Optional Parameters for H2O AutoML 12. Chapter 9: Exploring Miscellaneous Features in H2O AutoML 13. Chapter 10: Working with Plain Old Java Objects (POJOs) 14. Chapter 11: Working with Model Object, Optimized (MOJO) 15. Chapter 12: Working with H2O AutoML and Apache Spark 16. Chapter 13: Using H2O AutoML with Other Technologies 17. Index 18. Other Books You May Enjoy

Summary 

In this chapter, we understood the various functionality that H2O Flow has to offer. After getting comfortable with the web UI, we started implementing our ML pipeline. We imported and parsed the Heart Failure Prediction dataset. We understood the various operations that can be performed on the dataframe, understood the metadata and statistics of the dataframe, and prepared the dataset to later train, validate, and predict models.

Then, we trained models on the dataframe using AutoML. We understood the various parameters that needed to be input to correctly configure AutoML. We trained models using AutoML and understood the leaderboard. Then, we dived deeper into the details of the models trained and tried our best to understand their characteristics.

Once our model was trained, we performed predictions on it and then explored the prediction output by combining it with the original dataframe so that we could compare the predicted values.

In the next chapter,...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image