In the case that the input data is sparse or if we want fast convergence while training complex neural networks, we get the best results using adaptive learning rate methods. We also don't need to tune the learning rate. For most cases, Adam is usually a good choice.
Which optimizer to choose
Optimization with an example
Let's take an example of linear regression, where we try to find the best fit for a straight line through a number of data points by minimizing the squares of the distance from the line to each data point. This is why we call it least squares regression. Essentially, we are formulating the problem as an optimization problem, where we are trying to minimize a loss function.
Let's set up input...