Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Natural Language Processing with Java

You're reading from   Natural Language Processing with Java Techniques for building machine learning and neural network models for NLP

Arrow left icon
Product type Paperback
Published in Jul 2018
Publisher
ISBN-13 9781788993494
Length 318 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ashish Bhatia Ashish Bhatia
Author Profile Icon Ashish Bhatia
Ashish Bhatia
Richard M. Reese Richard M. Reese
Author Profile Icon Richard M. Reese
Richard M. Reese
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to NLP FREE CHAPTER 2. Finding Parts of Text 3. Finding Sentences 4. Finding People and Things 5. Detecting Part of Speech 6. Representing Text with Features 7. Information Retrieval 8. Classifying Texts and Documents 9. Topic Modeling 10. Using Parsers to Extract Relationships 11. Combined Pipeline 12. Creating a Chatbot 13. Other Books You May Enjoy

Pipelines


A pipeline is nothing more than a sequence of operations where the output of one operation is used as the input to another operation. We have seen it used in several examples in previous chapters but they have been relatively short. In particular, we saw how the Stanford StanfordCoreNLP class, with its use of annotators objects, supports the concept of pipelines nicely. We will discuss this approach in the next section. One of the advantages of a pipeline, if structured properly, is that it allows the easy addition and removal of processing elements. For example, if one step of the pipeline converts a token to lowercase, then it is easy to simply remove this step, with the remaining elements of the pipeline left untouched. However, some pipelines are not always this flexible. One step may require a previous step in order to work properly. In a pipeline, such as the one supported by the StanfordCoreNLP class, the following set of annotators is needed to support POS processing:

 props...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime