Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Microsoft Power BI Performance Best Practices

You're reading from   Microsoft Power BI Performance Best Practices A comprehensive guide to building consistently fast Power BI solutions

Arrow left icon
Product type Paperback
Published in Apr 2022
Publisher Packt
ISBN-13 9781801076449
Length 312 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Bhavik Merchant Bhavik Merchant
Author Profile Icon Bhavik Merchant
Bhavik Merchant
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Architecture, Bottlenecks, and Performance Targets
2. Chapter 1: Setting Targets and Identifying Problem Areas FREE CHAPTER 3. Chapter 2: Exploring Power BI Architecture and Configuration 4. Chapter 3: DirectQuery Optimization 5. Part 2: Performance Analysis, Improvement, and Management
6. Chapter 4: Analyzing Logs and Metrics 7. Chapter 5: Desktop Performance Analyzer 8. Chapter 6: Third-Party Utilities 9. Chapter 7: Governing with a Performance Framework 10. Part 3: Fetching, Transforming, and Visualizing Data
11. Chapter 8: Loading, Transforming, and Refreshing Data 12. Chapter 9: Report and Dashboard Design 13. Part 4: Data Models, Calculations, and Large Datasets
14. Chapter 10: Data Modeling and Row-Level Security 15. Chapter 11: Improving DAX 16. Chapter 12: High-Scale Patterns 17. Part 5: Optimizing Premium and Embedded Capacities
18. Chapter 13: Optimizing Premium and Embedded Capacities 19. Chapter 14: Embedding in Applications 20. Other Books You May Enjoy

General data transformation guidance

Power Query allows users to build relatively complex data transformation pipelines through a point and click interface. Each step of the query is defined by a line of M script that has been autogenerated by the UI. It's quite easy to load data from multiple sources and perform a wide range of transformations in a somewhat arbitrary order. Suboptimal step ordering and configuration can use unnecessary resources and slow down the data refresh. Sometimes, the problem might not be apparent in Power BI Desktop. This is more likely when using smaller subsets of data for development, which is a common practice. Hence, it's important to apply good Power Query design practices to avoid surprises. Let's begin by looking at how Power Query uses resources.

Data refresh, parallelism, and resource usage

When you perform a data refresh for an Import mode dataset in the Power BI service, the dataset stays online. It can still be queried by...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image