We define a function for the preprocessing steps in TensorFlow as follows:
def tf_preprocess(filelist):
images=[]
for filename in filelist:
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_jpeg(image_string, channels=3)
image_float = tf.cast(image_decoded, tf.float32)
resize_fn = tf.image.resize_image_with_crop_or_pad
image_resized = resize_fn(image_float, image_height, image_width)
means = tf.reshape(tf.constant([123.68, 116.78, 103.94]),
[1, 1, 3])
image = image_resized - means
images.append(image)
images = tf.stack(images)
return images
Here, we create the images variable instead of a placeholder:
images=tf_preprocess([x for x in x_test])
We follow the same process as before to define...