Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering PostgreSQL 13

You're reading from   Mastering PostgreSQL 13 Build, administer, and maintain database applications efficiently with PostgreSQL 13

Arrow left icon
Product type Paperback
Published in Nov 2020
Publisher Packt
ISBN-13 9781800567498
Length 476 pages
Edition 4th Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Hans-Jürgen Schönig Hans-Jürgen Schönig
Author Profile Icon Hans-Jürgen Schönig
Hans-Jürgen Schönig
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. PostgreSQL 13 Overview 2. Understanding Transactions and Locking FREE CHAPTER 3. Making Use of Indexes 4. Handling Advanced SQL 5. Log Files and System Statistics 6. Optimizing Queries for Good Performance 7. Writing Stored Procedures 8. Managing PostgreSQL Security 9. Handling Backup and Recovery 10. Making Sense of Backups and Replication 11. Deciding on Useful Extensions 12. Troubleshooting PostgreSQL 13. Migrating to PostgreSQL 14. Other Books You May Enjoy

Understanding full-text search

If you are looking up names or looking for simple strings, you are usually querying the entire content of a field. In full-text search, this is different. The purpose of the full-text search is to look for words or groups of words that can be found in a text. Therefore, full-text search is more of a contains operation, as you are basically never looking for an exact string.

In PostgreSQL, full-text search can be done using GIN indexes. The idea is to dissect a text, extract valuable lexemes (= "preprocessed tokens of words") string, and index those elements rather than the underlying text. To make your search even more successful, those words are preprocessed.

Here is an example:

test=# SELECT to_tsvector('english', 
'A car, I want a car. I would not even mind
having many cars');
to_tsvector
---------------------------------------------------------...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image