Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning with R, Second Edition

You're reading from   Mastering Machine Learning with R, Second Edition Advanced prediction, algorithms, and learning methods with R 3.x

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781787287471
Length 420 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Cory Lesmeister Cory Lesmeister
Author Profile Icon Cory Lesmeister
Cory Lesmeister
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. A Process for Success 2. Linear Regression - The Blocking and Tackling of Machine Learning FREE CHAPTER 3. Logistic Regression and Discriminant Analysis 4. Advanced Feature Selection in Linear Models 5. More Classification Techniques - K-Nearest Neighbors and Support Vector Machines 6. Classification and Regression Trees 7. Neural Networks and Deep Learning 8. Cluster Analysis 9. Principal Components Analysis 10. Market Basket Analysis, Recommendation Engines, and Sequential Analysis 11. Creating Ensembles and Multiclass Classification 12. Time Series and Causality 13. Text Mining 14. R on the Cloud 15. R Fundamentals 16. Sources

Introduction to neural networks


Neural network is a fairly broad term that covers a number of related methods, but in our case, we will focus on a feed forward network that trains with backpropagation. I'm not going to waste our time discussing how the machine learning methodology is similar or dissimilar to how a biological brain works. We only need to start with a working definition of what a neural network is. I think the Wikipedia entry is a good start.

In machine learning and cognitive science, Artificial neural networks (ANNs) are a family of statistical learning models inspired by biological neural networks (the central nervous systems of animals, in particular, the brain) and are used to estimate or approximate functions that can depend on a large number of inputs and are generally unknown. https://en.wikipedia.org/wiki/Artificial_neural_network

The motivation or benefit of ANNs is that they allow the modeling of highly complex relationships between inputs/features and response variable...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image