Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning with R

You're reading from   Mastering Machine Learning with R Master machine learning techniques with R to deliver insights for complex projects

Arrow left icon
Product type Paperback
Published in Oct 2015
Publisher
ISBN-13 9781783984527
Length 400 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Cory Lesmeister Cory Lesmeister
Author Profile Icon Cory Lesmeister
Cory Lesmeister
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. A Process for Success 2. Linear Regression – The Blocking and Tackling of Machine Learning FREE CHAPTER 3. Logistic Regression and Discriminant Analysis 4. Advanced Feature Selection in Linear Models 5. More Classification Techniques – K-Nearest Neighbors and Support Vector Machines 6. Classification and Regression Trees 7. Neural Networks 8. Cluster Analysis 9. Principal Components Analysis 10. Market Basket Analysis and Recommendation Engines 11. Time Series and Causality 12. Text Mining A. R Fundamentals Index

Machine learning defined

Machine learning is everywhere! It is used in web search, spam filters, recommendation engines, medical diagnostics, ad placement, fraud detection, credit scoring, and I fear in these autonomous cars that I hear so much about. The roads are dangerous enough now; the idea of cars with artificial intelligence, requiring CTRL + ALT + DEL every 100 miles, aimlessly roaming the highways and byways is just too terrifying to contemplate. But, I digress.

It is always important to properly define what one is talking about and machine learning is no different. The website, machinelearningmastery.com, has a full page dedicated to this question, which provides some excellent background material. It also offers a succinct one-liner that is worth adopting as an operational definition: machine learning is the training of a model from data that generalizes a decision against a performance measure.

With this definition in mind, we will require a few things in order to perform machine learning. The first is that we have the data. The second is that a pattern actually exists, which is to say that with known input values from our training data, we can make a prediction or decision based on data that we did not use to train the model. This is the generalization in machine learning. Third, we need some sort of performance measure to see how well we are learning/generalizing, for example, the mean squared error, accuracy, and others. We will look at a number of performance measures throughout the book.

One of the things that I find interesting in the world of machine learning are the changes in the language to describe the data and process. As such, I can't help but include this snippet from the philosopher, George Carlin:

 

"I wasn't notified of this. No one asked me if I agreed with it. It just happened. Toilet paper became bathroom tissue. Sneakers became running shoes. False teeth became dental appliances. Medicine became medication. Information became directory assistance. The dump became the landfill. Car crashes became automobile accidents. Partly cloudy became partly sunny. Motels became motor lodges. House trailers became mobile homes. Used cars became previously owned transportation. Room service became guest-room dining, and constipation became occasional irregularity.

 
 --Philosopher and Comedian, George Carlin

I cut my teeth on datasets that had dependent and independent variables. I would build a model with the goal of trying to find the best fit. Now, I have labeled the instances and input features that require engineering, which will become the feature space that I use to learn a model. When all was said and done, I used to look at my model parameters; now, I look at weights.

The bottom line is that I still use these terms interchangeably and probably always will. Machine learning purists may curse me, but I don't believe I have caused any harm to life or limb.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image