Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning for Time-Series with Python

You're reading from   Machine Learning for Time-Series with Python Forecast, predict, and detect anomalies with state-of-the-art machine learning methods

Arrow left icon
Product type Paperback
Published in Oct 2021
Publisher Packt
ISBN-13 9781801819626
Length 370 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ben Auffarth Ben Auffarth
Author Profile Icon Ben Auffarth
Ben Auffarth
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Introduction to Time-Series with Python 2. Time-Series Analysis with Python FREE CHAPTER 3. Preprocessing Time-Series 4. Introduction to Machine Learning for Time-Series 5. Forecasting with Moving Averages and Autoregressive Models 6. Unsupervised Methods for Time-Series 7. Machine Learning Models for Time-Series 8. Online Learning for Time-Series 9. Probabilistic Models for Time-Series 10. Deep Learning for Time-Series 11. Reinforcement Learning for Time-Series 12. Multivariate Forecasting 13. Other Books You May Enjoy
14. Index

What this book covers

Chapter 1, Introduction to Time-Series with Python, is a general introduction to the topic. You'll learn about time-series and why they are important, and many conventions, and you'll see an overview of applications and techniques that will be explained in more detail in dedicated chapters.

Chapter 2, Time-Series Analysis with Python, breaks down the steps for analyzing time-series. It explains statistical tests and visualizations relevant for making sense of and drawing insights from time-series.

Chapter 3, Preprocessing Time-Series, is about data treatment for time-series for traditional techniques and for machine learning. Methods such as naïve and Loess STL decomposition for seasonal and trend effects are covered, along with normalizations for values, as well as specific feature extraction techniques such as catch22 and ROCKET.

Chapter 4, Introduction to Machine Learning for Time-Series, deals with an overview of the state of the art for univariate and multivariate time-series forecasts and predictions.

Chapter 5, Forecasting with Moving Averages and Autoregressive Models, focuses on forecasting, mostly on univariate time-series (see Chapter 12, Multivariate Forecasting for multivariate time-series). Well-established traditional methods used in econometrics are introduced, explained, and applied on data sets.

Chapter 6, Unsupervised Methods for Time-Series, introduces anomaly detection, change detection, and clustering. The chapter reviews industry practices at major technology companies such as Facebook, Amazon, Google, and others, and gives practical examples for both anomaly detection and change detection.

Chapter 7, Machine Learning Models for Time-Series, reviews recent research on machine learning for time-series at institutes such as at the University of East Anglia and Monash University. Many techniques are summarized and compared throughout the chapter, and there's a practical section with many examples.

Chapter 8, Online Learning for Time-Series, introduces online learning, a topic often neglected. Online models continuously update their parameters based on latest samples, and some of them have mechanisms to deal with different kinds of drift – a common problem with time-series.

Chapter 9, Probabilistic Models for Time-Series, covers probabilistic models for time-series. This includes models with confidence intervals such as Facebook's Prophet, Markov Models, Fuzzy Models, and counter-factual causal models such as Bayesian Structural Time-Series Models as proposed by Google.

Chapter 10, Deep Learning for Time-Series, reviews recent literature and benchmarks for different tasks. The chapter explains techniques such as autoencoders, InceptionTime, DeepAR, N-BEATS, Recurrent Neural Networks, ConvNets, and Informer. Deep learning still hasn't completely caught up with more traditional or other machine learning techniques; however, the progress has been promising, and for certain applications such as multivariate predictions, deep learning techniques are emerging as the state of the art, as can be seen in competitions such as M4.

Chapter 11, Reinforcement Learning for Time-Series, gives an overview of basic concepts in reinforcement learning. It introduces techniques relevant for time-series such as bandit algorithms and Deep Q-Learning, and they are applied for a recommender system and for a trading algorithm.

Chapter 12, Multivariate Forecasting, gives practical examples for multivariate multistep forecasts of energy demand with deep learning models.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image