Chapter 3. Introducing Bayesian Inference
In Chapter 1, Introducing the Probability Theory, we learned about the Bayes theorem as the relation between conditional probabilities of two random variables such as A and B. This theorem is the basis for updating beliefs or model parameter values in Bayesian inference, given the observations. In this chapter, a more formal treatment of Bayesian inference will be given. To begin with, let us try to understand how uncertainties in a real-world problem are treated in Bayesian approach.