Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learn Amazon SageMaker

You're reading from   Learn Amazon SageMaker A guide to building, training, and deploying machine learning models for developers and data scientists

Arrow left icon
Product type Paperback
Published in Nov 2021
Publisher Packt
ISBN-13 9781801817950
Length 554 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Julien Simon Julien Simon
Author Profile Icon Julien Simon
Julien Simon
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Introduction to Amazon SageMaker
2. Chapter 1: Introducing Amazon SageMaker FREE CHAPTER 3. Chapter 2: Handling Data Preparation Techniques 4. Section 2: Building and Training Models
5. Chapter 3: AutoML with Amazon SageMaker Autopilot 6. Chapter 4: Training Machine Learning Models 7. Chapter 5: Training CV Models 8. Chapter 6: Training Natural Language Processing Models 9. Chapter 7: Extending Machine Learning Services Using Built-In Frameworks 10. Chapter 8: Using Your Algorithms and Code 11. Section 3: Diving Deeper into Training
12. Chapter 9: Scaling Your Training Jobs 13. Chapter 10: Advanced Training Techniques 14. Section 4: Managing Models in Production
15. Chapter 11: Deploying Machine Learning Models 16. Chapter 12: Automating Machine Learning Workflows 17. Chapter 13: Optimizing Prediction Cost and Performance 18. Other Books You May Enjoy

Chapter 1: Introducing Amazon SageMaker

Machine learning (ML) practitioners use a large collection of tools in the course of their projects: open source libraries, deep learning frameworks, and more. In addition, they often have to write their own tools for automation and orchestration. Managing these tools and their underlying infrastructure is time-consuming and error-prone.

This is the very problem that Amazon SageMaker was designed to address (https://aws.amazon.com/sagemaker/). Amazon SageMaker is a fully managed service that helps you quickly build and deploy machine learning models. Whether you're just beginning with machine learning or you're an experienced practitioner, you'll find SageMaker features to improve the agility of your workflows, as well as the performance of your models. You'll be able to focus 100% on the machine learning problem at hand, without spending any time installing, managing, and scaling machine learning tools and infrastructure.

In this first chapter, we're going to learn what the main capabilities of SageMaker are, how they help solve pain points faced by machine learning practitioners, and how to set up SageMaker. This chapter will comprise the following topics:

  • Exploring the capabilities of Amazon SageMaker
  • Setting up Amazon SageMaker on your local machine
  • Setting up Amazon SageMaker Studio
  • Deploying one-click solutions and models with Amazon SageMaker JumpStart
You have been reading a chapter from
Learn Amazon SageMaker - Second Edition
Published in: Nov 2021
Publisher: Packt
ISBN-13: 9781801817950
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime