Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Time Series Analysis with R

You're reading from   Hands-On Time Series Analysis with R Perform time series analysis and forecasting using R

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781788629157
Length 448 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Rami Krispin Rami Krispin
Author Profile Icon Rami Krispin
Rami Krispin
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Time Series Analysis and R FREE CHAPTER 2. Working with Date and Time Objects 3. The Time Series Object 4. Working with zoo and xts Objects 5. Decomposition of Time Series Data 6. Seasonality Analysis 7. Correlation Analysis 8. Forecasting Strategies 9. Forecasting with Linear Regression 10. Forecasting with Exponential Smoothing Models 11. Forecasting with ARIMA Models 12. Forecasting with Machine Learning Models 13. Other Books You May Enjoy

Forecasting with ARIMA Models

The Autoregressive Integrated Moving Average (ARIMA) model is the generic name for a family of forecasting models that are based on the Autoregressive (AR) and Moving Average (MA) processes. Among the traditional forecasting models (for example, linear regression, exponential smoothing, and so on), the ARIMA model is considered as the most advanced and robust approach. In this chapter, we will introduce the model components—the AR and MA processes and the differencing component. Furthermore, we will focus on methods and approaches for tuning the model's parameters with the use of differencing, the autocorrelation function (ACF), and the partial autocorrelation function (PACF).

In this chapter, we will cover the following topics:

  • The stationary state of time series data
  • The random walk process
  • The AR and MA processes
  • The ARMA and ARIMA...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image