Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Meta Learning with Python

You're reading from   Hands-On Meta Learning with Python Meta learning using one-shot learning, MAML, Reptile, and Meta-SGD with TensorFlow

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789534207
Length 226 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sudharsan Ravichandiran Sudharsan Ravichandiran
Author Profile Icon Sudharsan Ravichandiran
Sudharsan Ravichandiran
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction to Meta Learning FREE CHAPTER 2. Face and Audio Recognition Using Siamese Networks 3. Prototypical Networks and Their Variants 4. Relation and Matching Networks Using TensorFlow 5. Memory-Augmented Neural Networks 6. MAML and Its Variants 7. Meta-SGD and Reptile 8. Gradient Agreement as an Optimization Objective 9. Recent Advancements and Next Steps 10. Assessments 11. Other Books You May Enjoy

CACTUs


We've seen how MAML helps us to find the optimal initial model parameter so that we can generalize it to many other related tasks. We've also seen how MAML is used in supervised and reinforcement learning settings. But how can we apply MAML in an unsupervised learning setting where we don't have labels for our data points? So, we introduce a new algorithm called CACTUS short for Clustering to Automatically Generate Tasks for Unsupervised Model Agnostic Meta Learning.

Let's say we have a dataset

containing unlabeled examples:

. Now, what can we do with this dataset? How can we apply MAML over this dataset? First, what do we need for training using MAML? We need a distribution over tasks and we train our model by sampling a batch of tasks and find the optimal model parameter. A task should contain a feature along with its label. But how can we generate a task from our unlabeled dataset?

Let's see how can we generate tasks using CACTUS in the next section. Once we generate the tasks,...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image