In this chapter, we have learned how to model landslide data to predict the likelihood of landslides at different locations and also to produce a landslide susceptibility map. We used QGIS mainly for data preprocessing, and R for modeling. We have used a very simple model and considered only elevation and slope as explanatory variables for landslide. But, as we discussed at the start of this chapter, landslides can depend upon a number of other factors, such as human settlement, vegetation, settlement, tribal agricultural systems (Jhum, for Bangladesh), proximity to a drainage system, soil type, and so on. But, using the same technique as the one shown here, you can build a more inclusive model. Furthermore, we have considered only the logistic regression model here; using the same data preprocessing technique, you can now fit more sophisticated models, including neural...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine