Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Getting Started with Google BERT

You're reading from   Getting Started with Google BERT Build and train state-of-the-art natural language processing models using BERT

Arrow left icon
Product type Paperback
Published in Jan 2021
Publisher Packt
ISBN-13 9781838821593
Length 352 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Sudharsan Ravichandiran Sudharsan Ravichandiran
Author Profile Icon Sudharsan Ravichandiran
Sudharsan Ravichandiran
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1 - Starting Off with BERT
2. A Primer on Transformers FREE CHAPTER 3. Understanding the BERT Model 4. Getting Hands-On with BERT 5. Section 2 - Exploring BERT Variants
6. BERT Variants I - ALBERT, RoBERTa, ELECTRA, and SpanBERT 7. BERT Variants II - Based on Knowledge Distillation 8. Section 3 - Applications of BERT
9. Exploring BERTSUM for Text Summarization 10. Applying BERT to Other Languages 11. Exploring Sentence and Domain-Specific BERT 12. Working with VideoBERT, BART, and More 13. Assessments 14. Other Books You May Enjoy
Exploring Sentence and Domain-Specific BERT

Sentence-BERT is one of the most interesting variants of BERT and is popularly used for computing sentence representation. We will begin the chapter by understanding how Sentence-BERT works in detail. We will explore how Sentence-BERT computes sentence representation using the Siamese and triplet network architectures. Next, we will learn about the sentence-transformers library. We will understand how to use the pre-trained Sentence-BERT model to compute sentence representation with the sentence-transformers library.

Moving on, we will understand how to make the monolingual model multilingual with knowledge distillation in detail. Next, we will learn about several interesting domain-specific BERT models, such as ClinicalBERT and BioBERT. We will learn how ClinicalBERT is trained and how it is used for predicting the probability of re...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image