Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Generative Adversarial Networks Projects

You're reading from   Generative Adversarial Networks Projects Build next-generation generative models using TensorFlow and Keras

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781789136678
Length 316 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Kailash Ahirwar Kailash Ahirwar
Author Profile Icon Kailash Ahirwar
Kailash Ahirwar
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Introduction to Generative Adversarial Networks FREE CHAPTER 2. 3D-GAN - Generating Shapes Using GANs 3. Face Aging Using Conditional GAN 4. Generating Anime Characters Using DCGANs 5. Using SRGANs to Generate Photo-Realistic Images 6. StackGAN - Text to Photo-Realistic Image Synthesis 7. CycleGAN - Turn Paintings into Photos 8. Conditional GAN - Image-to-Image Translation Using Conditional Adversarial Networks 9. Predicting the Future of GANs 10. Other Books You May Enjoy

Training the DCGAN

Again, training a DCGAN is similar to training a Vanilla GAN network. It is a four-step process:

  1. Load the dataset.
  2. Build and compile the networks.
  3. Train the discriminator network.
  4. Train the generator network.

We will work on these steps one by one in this section.

Let's start by defining the variables and the hyperparameters:

dataset_dir = "/Path/to/dataset/directory/*.*"
batch_size = 128
z_shape = 100
epochs = 10000
dis_learning_rate = 0.0005
gen_learning_rate = 0.0005
dis_momentum = 0.9
gen_momentum = 0.9
dis_nesterov = True
gen_nesterov = True

Here, we have specified different hyperparameters for the training. We will now see how to load the dataset for the training.

Loading the samples

To train...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime