In this chapter, we introduced recurrent neural networks and demonstrated how to use an RNN on the MNIST dataset. RNNs are particularly useful for working with time series data, since they are essentially feedforward networks that are unrolled over time. This makes them very suitable for tasks such as handwriting and speech recognition, as they operate on sequences of data. We also looked at a more powerful variant of the RNN, the LSTM. The LSTM uses four gates to decide what information to pass on to the next time step, enabling it to uncover long-term dependencies in data. Finally, in this chapter we built a simple language model, enabling us to generate text from sample input text. We used a model based on the GRU. The GRU is a slightly simplified version of the LSTM, containing three gates and combining the input and forget gates of the LSTM. This model used probability...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand