Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Engineering with dbt

You're reading from   Data Engineering with dbt A practical guide to building a cloud-based, pragmatic, and dependable data platform with SQL

Arrow left icon
Product type Paperback
Published in Jun 2023
Publisher Packt
ISBN-13 9781803246284
Length 578 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Roberto Zagni Roberto Zagni
Author Profile Icon Roberto Zagni
Roberto Zagni
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: The Foundations of Data Engineering
2. Chapter 1: The Basics of SQL to Transform Data FREE CHAPTER 3. Chapter 2: Setting Up Your dbt Cloud Development Environment 4. Chapter 3: Data Modeling for Data Engineering 5. Chapter 4: Analytics Engineering as the New Core of Data Engineering 6. Chapter 5: Transforming Data with dbt 7. Part 2: Agile Data Engineering with dbt
8. Chapter 6: Writing Maintainable Code 9. Chapter 7: Working with Dimensional Data 10. Chapter 8: Delivering Consistency in Your Data 11. Chapter 9: Delivering Reliability in Your Data 12. Chapter 10: Agile Development 13. Chapter 11: Team Collaboration 14. Part 3: Hands-On Best Practices for Simple, Future-Proof Data Platforms
15. Chapter 12: Deployment, Execution, and Documentation Automation 16. Chapter 13: Moving Beyond the Basics 17. Chapter 14: Enhancing Software Quality 18. Chapter 15: Patterns for Frequent Use Cases 19. Index 20. Other Books You May Enjoy

Defining data sources and providing reference data

Every data warehousing project, in theory, can be reduced to finding the right data sources and their transformations to achieve the outputs that you want.

In an ideal world, you can always find the data that you need and produce what you want, but life is usually more complicated, as you might not have all the data sources or information that you would like. The reality is that often you need to adapt your goals and see what you can achieve starting from what you have.

In any case, defining your data sources is crucial, as they are what is provided to you, and by writing proper transformations, you can be the best steward of the information contained therein, unless you are in the rare position to change what the source systems collect or to design your data sources.

Defining data sources in dbt

In dbt, you have two proper ways to designate and take into use external data, that is, data that is not created or transformed...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime