Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Clojure Data Analysis Cookbook - Second Edition

You're reading from   Clojure Data Analysis Cookbook - Second Edition Dive into data analysis with Clojure through over 100 practical recipes for every stage of the analysis and collection process

Arrow left icon
Product type Paperback
Published in Jan 2015
Publisher
ISBN-13 9781784390297
Length 372 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Eric Richard Rochester Eric Richard Rochester
Author Profile Icon Eric Richard Rochester
Eric Richard Rochester
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Importing Data for Analysis 2. Cleaning and Validating Data FREE CHAPTER 3. Managing Complexity with Concurrent Programming 4. Improving Performance with Parallel Programming 5. Distributed Data Processing with Cascalog 6. Working with Incanter Datasets 7. Statistical Data Analysis with Incanter 8. Working with Mathematica and R 9. Clustering, Classifying, and Working with Weka 10. Working with Unstructured and Textual Data 11. Graphing in Incanter 12. Creating Charts for the Web Index

Introduction


You probably won't spend as much time to get the data as you will in trying to get it into shape. Raw data is often inconsistent, duplicated, or full of holes. Addresses might be missing, years and dates might be formatted in a thousand different ways, or names might be entered into the wrong fields. You'll have to fix these issues before the data is usable.

This is often an iterative, interactive process. If it's a very large dataset, I might create a sample to work with at this stage. Generally, I start by examining the data files. Once I find a problem, I try to code a solution, which I run on the dataset. After each change, I archive the data, either using a ZIP file or, if the data files are small enough, a version control system. Using a version control system is a good option because I can track the code to transform the data along with the data itself and I can also include comments about what I'm doing. Then, I take a look at the data again, and the entire process starts...

You have been reading a chapter from
Clojure Data Analysis Cookbook - Second Edition - Second Edition
Published in: Jan 2015
Publisher:
ISBN-13: 9781784390297
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image